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PROJECT OVERVIEW 

This project conducted pilot investigations on the development of an in-vehicle measurement 

system that monitors the physiological signals (i.e., heart rate, heart rate variation, breathing 

and eye brinking) of drivers.  These physiological signals will be utilized to detect the onset 

of driver fatigue, crucial for timely applying drowsiness countermeasures. Fatigue driving is 

one of the most significant factors causing traffic accidents. Clinic research has found 

physiological signals are good indicators of drowsiness. A conventional bioelectrical signal 

measurement system requires the electrodes to be in contact with human body. This not only 

interferes with the normal driver operation, but also is not feasible for long term monitoring 

purpose. This study developed a non-contact sensing platform that can remotely detect 

bioelectrical signals in real time. With delicate sensor electronics design, the bioelectrical 

signals associated with electrocardiography (ECG), breathing and eye blinking can be 

measured.  The current sensor can detect the Electrocardiography (ECG) signals with an 

effective distance of up to 30 cm away from the body. It also provides sensitive measurement 

of physiological signals such as heart rate, breathing, eye blinking etc. The sensor 

performance was validated on a high fidelity driving simulator. Digital signal processing 

algorithms has been developed to decimate the signal noise and automate signal analyses. The 

characteristics of physiological signals indicative of driver fatigue, i.e., the heart rate (HR), 

heart rate variability (HRV), breath frequency and eye blinking frequency, can be determined. 

A robust drowsiness indicator will be developed by coupling the multiple physiological 

parameters to achieve high reliability in drowsiness detection. 

INTRODUCTION 

Traffic accident is predicted to be the third leading cause of death and disability in 2020 

(Murray and Lopez, 1997). Driver fatigue, one of the most prevalent root causes of accidents, 

leads to nearly 17% of all fatal crashes in recent years, according to the new data analysis 

from AAA Foundation for Traffic Safety of National Highway Traffic Safety Administration 

(NHTSA) (Copeland, 2010).  

Two out of every five drivers (41.0%) reported having ever fallen asleep or nodded off while 

driving, including 3.9% within the past month, 7.1% within the past 6 months, and 11.0% 

within the past 12 months”. (Tefft 2010) 

Truck driver fatigue is a factor in 3 to 6 percent of fatal crashes involving large trucks. 

Fatigue is also a factor in 18 percent of single-vehicle, large-truck fatal crashes1. Overall 

drowsy driver crashes cost $12 billion and contribute to up to 35% of the 4,400 annual truck 

driver deaths (FHWA 2005).  Commercial drivers themselves recognize fatigue and 

                                                            
1 http://www.its.dot.gov/ivi/8MPA.html#DC 
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inattention as significant risk factors, having identified these conditions as priority safety 

issues at a 1995 Truck and Bus Safety Summit (FHWA 1998). Fatigued drivers are often 

unaware of their condition, frequently driving for 3-30 seconds with their eyes closed. 

Twenty-four hour operations, high annual mileage, exposure to demanding environmental 

conditions and demanding work schedules make drowsiness a major cause of combination-

unit truck (CUT) crashes (Table 1). 

Table 1 Drowsy Driver Problem (Tefft 2010, USDOT 2005, Knipling and Wang 1995) 

 Passenger Vehicles Heavy Trucks 
Total Est. Drowsy Crashes 96,000 3,300 
Total Est. Involvement 95.9% 3.3% 
Drowsy Related Fatalities 1,429 84 
Fatalities Outside Vehicle 12% 37% 
Drowsiness Cited by Police .52% .82% 
Miles/Year Exposure 11 k 60 k 
Years Operational Life 13 15 
Primary Driving Period Day Night 

 

It has already drawn growing attention to public safety in general, and several measures, i.e., 

work-shifting, Hours of Service (Federal Motor Carrier Safety Administration, 2008), etc., 

have been adopted to avoid this situation. Although these measures can reduce the road risk, 

they cannot prevent the occurrence of driver fatigue.  Timely detection and countermeasure of 

driver fatigue are important to reduce fatigue related accidents.  

TECHNICAL BACKGROUND 

Methods to Evaluate Driver Drowsiness 

Generally speaking, methods to assess driver fatigue falls into two major categories (i.e., 

subjective methods and objective methods). The subjective assessment is based on the state of 

drivers described by participants using questionnaires (Chalder et al, 1993; Johns, 1993). Due 

to the variations of individuals and driving conditions, the accuracy of subjective assessment 

cannot be guaranteed. The objective methods are based on testing the performance of drivers 

or parameters of motor vehicles without impacting the attention of subjects.  Therefore the 

results are believed to be more reliable than subjective methods. Currently, an increasing 

number of Fatigue Management Technologies (FMT) are available to detect the operator 

fatigue.   

Great strides have been made in the last fifty years with regard to knowledge about sleep, 

sleep need, the effects of sleep loss on performance, and related issues. Even more recently, 

major advances have occurred in human circadian rhythms research, leading to an improved 
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understanding of these daily rhythms and their control by the human circadian pacemaker in 

the brain.   

Progress has also been made for drowsiness detection. Wierwille et al (1994) generated a 

measure of drowsiness based on measuring the eye, PERCLOS, associated with degradation 

in driving performance in a simulated roadway environment. Experimental studies performed 

by Dinges, et al (1998) showed that PERCLOS was able to accurately predict fatigue-induced 

lapses in vigilance. Studies by Grace, et al (1999) of overnight commercial trucking 

operations have produced a real-time monitor capable of detecting driver drowsiness in an 

operational setting. Furthermore, this monitor used in conjunction with a driver feedback 

system has been shown to decrease drowsiness and improve driver performance in simulated 

driving conditions (Mallis et al, 2000).  Electronics manufactures and motor vehicle industry 

are delving into this important issue that can significantly improve the transportation safety.  

A few pilot drowsiness detection systems are being studied; examples include those based on 

3D optical sensing of eye lips (e.g. Siemens DOV2).   

The  European  Commission  (EC)  has  recently announced  two  extensive  activities  for 

promoting  the  monitoring  of  driver  fatigue:  AWAKE  and  Sensation.  The preliminary 

recommendation is to adopt a behavioural analysis (e.g. limb, gaze or head movements, etc.) 

of the driver and also to utilise driving performance measures (e.g. lane-keeping or steering 

wheel reversal rate) (Boverie 2004).  These progresses, for the first time, make accurate 

detection and management of drowsiness feasible. 

These technologies can prevent accidents to a certain extent (Williamson and Chamberlain, 

2005, Barr et al., 2005). Edwards et al. (2007) evaluated the performance of 22 available 

technologies and ranked them according to objective and subjective scores. Based on the 

survey, they found that fatigue detection based on the eye feature detection reached higher 

reliability; products with the highest ranking typically involve multiple sensors or integrate 

the ability to process multiple features.  The survey also found that although there are a 

number of commercial detection methods for fatigue, they do not achieve sufficient 

reliability. Moreover, the cost of the fatigue-detection products is another key factor affecting 

their wide adoption. Therefore, development of reliable, low cost driver fatigue assistance 

system are necessary to further advance in this area.     

Relationship between Physiological Signals and Drowsiness  

Bioelectricity is generated on the cell level and acts as the charge flow on human surface. The 

electrical charges on the skin off the chest are mainly caused by the depolarization of heart 

muscles during each heartbeat cycle. In each cycle, nerve excitability is triggered by sinoatrial 

                                                            
2 http://findarticles.com/p/articles/mi_m0KJI/is_6_115/ai_103990202 (Siemens DOV) 
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node, and then spreads through atrium, intrinsic conduction pathways and ventricles. As a 

result, it causes the change of action potential in cells manifested as the form of tiny rises and 

falls of potential on body surface. The electrical activity of heartbeat cycle is adjusted 

rhythmicly by central and peripheral nervous system. Fatigue causes changes in spontaneous 

rhythmic activity, breathing, cardiovascular reflex activity, blinking, nodding, etc. The 

comprehensive regulation of these changes by the central nerve system will finally cause 

changes in the physiological signals.  

A few physiological signals of drivers have been found to be good drowsiness indicators. It is 

generally believed that fatigue is the behavior of the central nervous system. When stress 

response of organs occurs during fatigue, cardiovascular nervous system will adjust 

accordingly. Therefore onset of fatigue causes changes in the bioelectrical signals, such as the  

electrocardiogram (ECG), a recording of electrical signals produced by the electro-dynamic 

functioning of the heart. Previous work has found that the ECG signal and its derived 

information, which includes the information of the heart rate (HR), heart rate variability 

(HRV) and frequency of breathe, has affinity with fatigue. HR  is the number of heartbeats per 

unit of time, typically expressed as beats per minute (bpm); while HRV is a physiological 

phenomenon where the time interval between heart beats varied, which is measured by the 

variation in the beat-to-beat interval. Riemersma et al (1977) found that HR of drivers would 

decrease during long-time night driving. Wilson and Donnel (1988) pointed out that HR 

reflected the physical and mental level under different task requirement and therefore could 

be applied to fatigue detection. Hartley and Amoid (1994) concluded that fatigue had 

significant effect on the change of HR. Busek et al (2005) presented that the spectrum of 

HRV varied significantly during the experiments of fatigue driving. It is also commonly 

accepted that onset of fatigue is accompanied with decreasing breathing frequency.  The onset 

of fatigue causes increases in the blinking frequency as the driver tries to keep the eyes open.  

Electrocardiography (ECG or EKG) is a 

transthoracic interpretation of the electrical 

activity of the heart over time captured and 

externally recorded by a non-invasive 

electrocardiographic device. It has been known 

for many years that a measurable amount of 

electric current is associated with activity of the 

heart. 

The methods for drowsiness identification based 

on ECG signal include Heart Rate (HR) analysis, 

Heart Rate Variability (HRV) analysis and 

amplitude analysis of T wave.  Based on the 
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results of a great number of experiments, Wilson et al. (1988) concluded that HR signal is an 

overall indictor, which reflects the physical and mental level under different task requirement. 

Hart et al. (1990) agreed, and summarized that HR signal reflect the combined effect of tasks, 

feelings, etc, on operators. Riemersma et al. (1977) found that HR of drivers would decrease 

during long-time night driving. Hartley et al. (1994) considered that the change of HR has 

potential significance on driving fatigue. Y. Liu et al. (2003) also studied the change of blood 

pressure and heart beating under drowsiness.  Heart rate variability (HRV) is a measure of the 

variations in heart beating rate.  Itoh (1989) found that HRV can differentiate the levels of 

workload and fatigue. Hanlon found HRV varies significantly during the experiments of 

fatigue drivers. The research of Kramer indicated that HRV signal can reflect the workload of 

human cognitive to certain degree and warrant further investigation.  

The combined effects of HR and HRV have also been studied. Kalsbeek and Wartna 

illustrated that with the mental workload increasing, HRV signal would decrease while the 

HR signal almost remained the same. However, Mulder et al. (1973) found that with the load 

increasing, HRV decreased and HR increased significantly. The different of the results may 

be caused by that the physical and mental load were not distinguished in study, and they may 

influenced on each other. Dhong et al. (1990) improved the previous researches and 

differentiated the load into two categories, heavy physical- light mental and light physical- 

heavy mental load, in order to reduce the interaction. The results illustrated that with the 

increasing of physical loads, there are appreciable amount of decrease in HRV while HR 

increases. 

Development of Non-contact ECG Sensor 

Significant technical advances have been made in electrocardiogram over the past decades. A 

typical clinic ECG system is based on 12-lead electrodes placed at different positions in 

contact with human skin. The input impedances of these probes are 106-107Ω. The relatively 

low impedance requires the probe to be in good electrical contact with skin, which is typically 

accomplished with a conductive gel.  Besides, the electrical currents flowing in the body 

changes the surface electrical potentials (Harland et al, 2002). Nevertheless, the contact mode 

has advantages in achieving high signal quality, the signals are immune to electromagnetic 

interference, etc. Such ECG systems, while has achieved good performance under clinic 

settings, are not suitable for  long term monitoring purpose. 

Alternative sensors have been studied to further improve over the traditional ECG system. For 

example, Wikswo (1995) studied the use of high sensitivity magnetometer, Superconducting 

Quantum Interference Device (SQUID) magnetometer, for bioelectricity measurement.  This 

sensor, while found capable of non-contact bioelectricity sensing, requires cryogenic 

operations and extremely magnetically shielded environments.  These make it impractical for 
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mobile applications. Electric field sensor is another way for remote bioelectrical sensing. 

Lopez and Richardson (1969) reported the success in the development of a non-contact 

electrical field sensor for ECG detection.  Major efforts have been made to improve its 

performance and fabrication technology. Prance et al (2000) and Harland et al (2002) 

developed high-input-impedance probes with low input-bias current amplifiers. Further 

advances in non-contact ECG sensors were introduced by Matthews et al (2005) and Park et 

al (2006), who designed a wearable wireless ECG monitoring system. Sullivan et al (2007) 

described a compact low-noise EEG/ECG sensor. Although the reported sensors do not need 

to be contact with skin directly, they still need close proximity of the electrode to human 

body.  

In summary, although ECG signals have been widely used as a vital signal and used in health 

care industry, its measurement typically requires expensive equipment and contact electrodes.  

This causes inconveniences and interferes with normal driver behaviors. In this study, we 

developed an innovative non-contact sensing system that detects the ECG signal away from 

the body, from which the information of HR, HRV and breathing frequency can be 

determined in real-time. Moreover, the system was also able to detect the eye blinking due to 

electromyography (EMG) by using glasses as the sensing element. A robust drowsiness 

indicator can be developed by coupling the four physiological indicators to achieve reliable 

detection of driver fatigue. Therefore, countermeasures can be applied timely to enhance the 

road safety.  

SYSTEM DESIGN 

Principles for Bioelectricity Sensing 

In this research we developed a sensor that can detect the ECG signal 20 cm to 30 cm away 

through cloth.  Such high sensitivity makes it possible for practical implementation for driver 

physiological signal monitoring purpose.  Our non-contact ECG sensor detects the potential 

of on the human body caused by neural activities through capacitive coupling.  Figure 1 (a) 

shows the mechanism in the generation of bioelectrical current, and (b) expresses the 

mechanism of sensing via the induced current.     

The conductive plate of the sensor, which is made of metal or conductive polymer, and the 

human surface act as a coupling capacitor. In practice, the dielectric spacer is air layer, thus 

the sensor is a remote detecting device. Due to capacitive coupling, the charges on the 

conductive plate remain the same amount as the effective area parallel to the human body. 

Moreover, our device can also be used to detect the EMG associated with eye blinking, which 

is another good indicator of fatigue.  The induced signals can be detected by designing high 

impedance and high quality signal amplification systems elaborated in the following sessions.   
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(a)                                  (b) 

Figure 1 Principle of non-contact ECG sensor. (a) The generation of bioelectrical current 

caused by neural activities; (b) principle of induced current. 

Preamplifier 

The preamplifier is a circuit that processes the bioelectrical signal detected on the human 

surface. Table 1 shows the magnitude and frequency of typical bioelectrical signals. In this 

paper, ECG and EMG signals are detected to evaluate fatigue. Therefore the preamplifier is 

configured with a gain of 10V/V. 

The circuit contains an amplifier and a filter. To obtain high input impedance and low noise, 

an instrument amplifier (INA116, Texas Instrument Inc.) was used for amplification. The 

input impedance of amplifier is around 1018 Ω. Due to the impedance matching, the common 

mode rejection ratio (CMRR) of the instrument amplifier can be ideally infinite, which means 

the circuit can achieve high SNR, since the noise is considered to couple into the circuit as the 

common mode signal. The block diagram is outlined in Figure 2. The bioelectrical signal is 

first coupled to the conductive electrode through capacitance. For ECG detection, a 

conductive plate is used as the electrode; while for the eye blinking detection, an electrode is 

fabricated and connected using extension cable (Figure 5 (b)). The signal then acts as a 

potential at the input of the amplifier via current bias component. In practice, the first signal 

amplification is completed with CMRR of 90dB at 0-1kHz at gain of 10V/V. The next stage 

is a lowpass filter with a cutoff frequency of 45Hz. The shielding package is accomplished by 

a metal box covering the printed circuit board (PCB).  

Table 1 Magnitude and frequency range of main bioelectrical signals 

Bioelectrical Signal Magnitude Frequency 
 Electrocardiogram (ECG) 50μV-50mV 0.05Hz-100Hz 
Electroencephalography 
(EEG) 

         2μV-10μV  10Hz-2kHz 

 Electromyography (EMG) 20μV-10mV    10Hz-10kHz 
 Electrooculography (EOG)         10μV-4mV   0.1Hz-100Hz 
 Electrogastrogram (EGG) 10μV-80mV  0Hz-1Hz 
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Figure 2 Block Diagram of the non-contact ECG sensor preamplifier. 

EXPERIMENT 

Evaluation of sensor performance has been carried out in stages. The first stage was in a 

electromagnetic shielded room, the second stage under ordinary lab conditions, in the third 

stage, experiments were conducted on driving simulators located in Haptic Interface 

Laboratory, Case Western Reserve University, which is an unshielded room. Sensor design 

has been further improved with experience from each evaluation stage. Only example data in 

the third stage are reported in this paper.  

Experiment 1- Sensitivity in ECG Detection 

        

Figure 3 Detection system setup for ECG signal 

During the experiment, the subject was seated in the driving simulator which was located in 

an unshielded room, and the sensor was placed off body in front of left chest at distances of 

up to 30 cm.  Photos of experimental set up are shown in Figure 3.  A sensitivity study was 

conducted where the human body was in different distances away from the body.  The signals 

from 10cm, 20cm and 30cm away were detected and the raw data are displayed in Figure 4. 
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From this figure, the SNR decreases apparently with the distance from body. At the distance 

less than 20cm, the sensor can clearly detect the ECG signal (Figure 4 (a) (b)). When the 

distance is between 25cm and 30cm, the signal is detectable but vague (Figure 4 (c)).  This 

might imply that 30cm is the upper bound where the sensor can detect the ECG signal. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

Time(s)

P
ot

en
tia

l (
V
)

 

(a) ECG signal at the distance of 10cm. 
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(b) ECG signal at the distance of 20cm. 
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(c) ECG signal at the distance of 30cm 

Figure 4 ECG signal detected off body through clothing at different distance. 
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Experiment 2-Eye Blinking Detection 

Drowsy drivers typically have problems to control their eyes.  Physiologically this 

demonstrates as rapid blinking at the on-set of drowsiness and slow blinking as the drivers are 

deeply affected.  This experiment aims to evaluate the capability of our sensor to detect the 

eye blinking, which might reflect the degree of drowsiness. In the experiment, a soft 

conductive plate was attached to the frame of glasses and acted as a detection element, as 

shown in Figure 5. The electrode was connected to the system via an extension cable. The 

subject was allowed to breathe and move close to normal while driving a high fidelity driving 

simulator.   

(a)                                       (b) 

     

Figure 5 Driving fatigue detection: (a) High fidelity driving simulator; (b) photo of subject 

driving the driving simulator while being monitored by the eye blinking detection sensor. 

Experiment 3-Driving Fatigue Detection 

To evaluate the performance of our system for driver fatigue signal extraction, controlled 

fatigue experiments was conducted on a high fidelity driving simulator (Figure 5 (a)). The 

driving simulator has six-screen displays for the scenery around the driver, which emulate the 

driving experience on the road. During this experiment, a high-way scenario was programmed 

with moderate traffic. The subject was seated in the simulator and equipped with the 

bioelectrical measurement based system developed in this study (Figure 5 (b)).  Prior to the 

testing, the subject was subjected to slight sleep deprivation until he indicated he felt sleepy.  

The ECG signal and the eye blinking information were detected and recorded for 15 minutes.  

Chalder subjective scale (Chalder et al., 1993) was used before and after driving to estimate 

the fatigue degree of subjects. In the scale, fourteen questions are listed and answered by the 

driver. Four options were “better than usual”, “no more than usual”, “worse than usual”, 

“much worse than usual”, and scoring of the questionnaire was carried as 1-4. The average of 

score reflects the fatigue level. 1 refers to non-fatigue; 2-4 are mild, moderate and severe 
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fatigue. The subject reported score of 1 (non-fatigue) at the beginning and reported score of 3 

(mild drowsy) around the end of the experiment.   

EXPERIMENTAL DATA AND ANALYSIS 

HR and HRV 

According to Table 1, the frequency components of normal ECG signal ranges from 0.01 to 

100Hz with energy concentrates in 5-45Hz. During the experiments, several sources of noise 

can interfere with the original bioelectrical signal, such as EMG, power line interference, 

electronic noise and  baseline drifts.  EMG signal is caused by human motion and muscle 

contraction, which typically ranges between 2-5kHz; power line generates 60Hz noise; and 

baseline drift caused by low frequency interference, such as the movement of electrode and 

breathing, is usually 0.05~2Hz. Therefore, besides the hardware filer, a digital bandpass filer 

with bandwith bwtween 0.5-30Hz was introduced to recover the ECG signal from noise.  

Figure 6 (a) shows a typical raw signal collected during the experiments.  Figure 6 (b) shows 

the signal after processed with digital filtering.  It is clear enough to detect the heart beating 

cycle, and therefore compute the Heart Rate (HR) and Heart Rate Variability (HRV). As 

described in the literature review, there were a strong link between the physiological 

parameters HR and HRV and fatigue. 

To detect HR and HRV automatically, an algorithm was developed to pick the peak of the 

wave and determine HR and HRV in real time. The algorithm identifies the peaks according 

to the threshold magnitude. Figure 6 (b) illustrates the performance of the algorithm. From 

this figure we can see that the algorithm has good performance in peak detection. From the 

peaks, HR can be determined  with easiness.  From the experimental ECG signals shown in 

Figure 4 (which was collected during Experiment 1), the heart rates measured were 78.425 

bpm, 78.301 bpm, 76.033 bpm respectively. For the signal shown in Figure 6, the HR was 

found to be 78.907 bpm. All these results were reasonable, as the common heart rate is round 

60-90 bpm under normal circumstances according to clinic record.  

From the time variation of HR, HRV can be easily calculated. The average and variance 

of HRV in per minute is computed to estimate the spectrum and distribution of HRV. 

Thresholds of HR and HRV can be established and used for warning of fatigue onset.  
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(c) Breathing detection 

Figure 6 Examples on the performance of sensor and signals: (a) Raw data; (b) ECG signal 

after digital filtering and peak identifying algorithm; (c) Breathing signal 
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Breathing Detection 

It was observed during experiments that the baseline variation corresponded to the breathing 

activities. Moreover, the frequency of baseline fluctuating and the breathing rhythm of the 

subject coincided very well. When the subject breathes, rising pulses in the baseline were 

clearly observed. Since the frequency of breathing is low, a highpass filter with cutoff 

frequency of 2Hz was applied. Figure 6 (c) shows the filtered signal. The breathing pulse is 

clearly seen from this figure.  With the digital filtering and peak identification algorithms, the 

breathing frequency can be instantly determined. In this case, the breathing frequency was 

found to be 26 per min. It is generally known that during sleep, the breathing rate is typically 

lower than under normal awake conditions.  Drowsiness is accompanied with slower than 

normal breathing frequency. This can potentially provide another independent indicator for 

driver fatigue detection.  

Eye Blinking Detection 

The frequency of eye blinking has been used by several researchers as drowsiness indictor 

(Edwards et al., 2007). Common method for eye blinking detection involves the use of a 

monitoring camera.  The frequency of eye blinking is determined based on image analyses.  

Typically, people blink more frequently at the onset of drowsiness. Eye blinking results in 

facial muscle contracts and can be detected as bioelectrical pulse. This can be detected with 

our bioelectricity based system.  The detected signal in Experiment 2 is displayed in Figure 7. 

It can be seen that eye blinking causes distinctive pulse responses in the bioelectrical signals. 

Using the developed peak identification algorithm, the frequency of eye blinking can be 

determined in the real time. This physiological parameter provides another independent 

indicator for drowsiness.  

     
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-80

-60

-40

-20

0

20

40

60

80

Time (s)

P
o
te

n
tia

l (
m

V
)

 

Figure 7 Example of recorded bioelectrical signal with responses to eye blinking marked 
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Fatigue Detection 

For the experiment conducted on the driving simulator, the subject underwent a sleep deprival 

procedure.  ECG signal and the eye blinking signal were recorded for 15 minutes while the 

subject was driving a high fidelity driving simulator.  The status of driver was assessed based 

on driver’s self-assessment using the Chalder subjective scale.  The signals were analyzed 

using the developed algorithm.  The physiological parameters before and after the driving test 

are summarized in Table 2.   

In brief, the HR was 68.2 bpm at the beginning of the experiment when the subject was 

non-fatigue; while the HR was 65.6 bpm when the subject felt mild fatigue at the end of the 

experiment. Figure 8 shows the heart rate recorded during the experiment, which clearly show 

the trend that corresponds to the variation from non-fatigue to fatigue status. During the 

experiment, there was a decreasing trend of HR overall. Moreover, the spectrum of HRV 

reduced slightly (Table 2) when the driver became fatigue. The average of HRV proliferated 

while the variance decline apparently. There were apparent increase in the frequency of eye 

blinking when the driver felt drowsy. Using the same sensor with multiple electrodes,  the 

system we developed can simultaneously provide four independent physiological indicators 

of fatigue, i.e., HR, HRV, breathing frequency and eye blinking frequency. The fusion of 

these four independent information can further improve the reliability of drowsiness indicator. 

Therefore, it will help reduce the chance of false detection.  A sensor data fusion strategy is 

being developed as we continue our investigation. 
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Figure 8 Heart rate during experiment 
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Table 2 Physiological parameters before and after driving test 

 Non-fatigue Mild fatigue 
Heart Rate (HR) 68.2124 per min 65.5805 per min 
HRV-average 3.1ms 6.4ms 
HRV-variance 14.1ms 7.4ms 
Eye blinking frequency Relatively low Relatively high 
Breath frequency No apparent change 

 

CONCLUSION 

In this project, we explored the development of an innovative non-invasive bioelectrical 

measurement system. The system features high sensitivity in non-contact measurement of 

biopotentials on human body.  The sensor prototype was found to be able to detect the ECG 

signal at a distance up to 30cm.  By use of developed signal processing algorithm, the heart 

rate, heart rate viability and breath frequency can be obtained in real time. Moreover, the 

system also detects the eye blinking, another good indicator of fatigue. Experiments were 

conducted on a high-fidelity driving simulator to evaluate the performance of this sensor and 

signal processing algorithm. The results are encouraging. By monitoring the four independent 

physiological indicators of drowsiness under holistic driving conditions, the sensor data will 

provide important input for sensor fusion.  Our long term goal is to develop this technology  

into a robust in-vehicle drowsiness monitoring system to improve driver safety.  
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